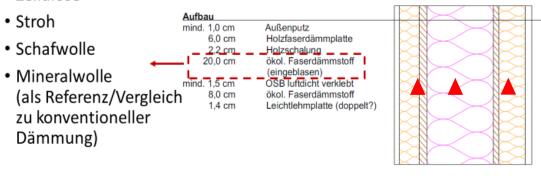


Messungen an der TU Wien


- "Stresstest": Fehlertoleranz von ökol. Dämmstoffen Prüfstand
 - Stroh, Zellulose, Schafwolle, Mineralwolle
- Haus des Lernens
 - Wärmeleitfähigkeit Stroh (Nadelsondenmessung)
 - U-Wert (Wärmestrommessung)
 - Begrüntes Dach: Feuchtigkeit
- Zyklamengasse
 - Wärmeleitfähigkeit nach Wasserschaden (Schafwolle)
- Wärmeleitfähigkeit verschiedener Einblastechnologien Stroh
 - Stehend, liegend, recycling
- Schimmelversuche Dämmstoffe . Brandschutz

Stresstest: Fehlertoleranz ökologischer Dämmstoffe

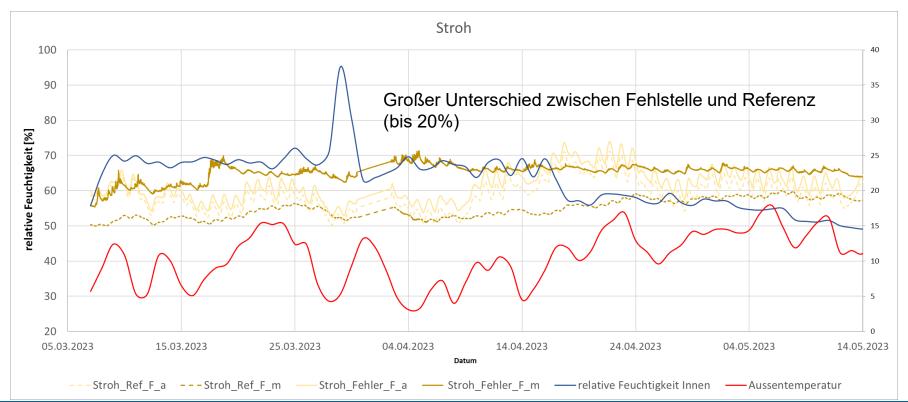
Wandaufbauten

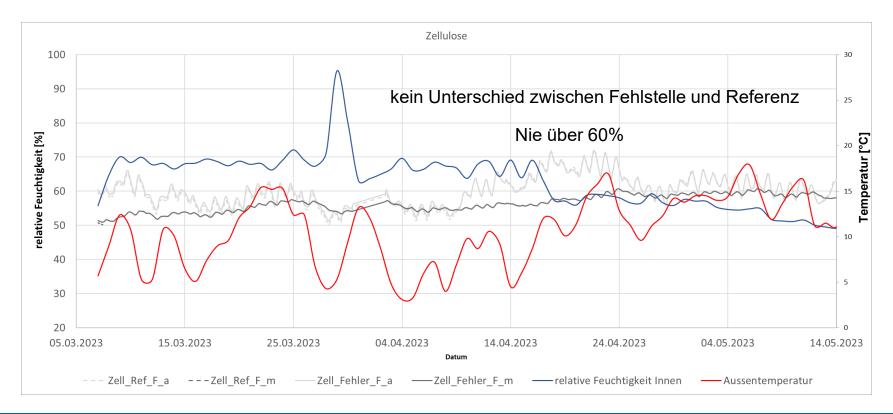
Zellulose

Temperatur- und Luftfeuchtigkeitssensor, misst alle 5 min

- Hohe Luftfeuchtigkeit im konditionierten Innenraum
 - dauerhaft 60%
 - kurzzeitig 100%

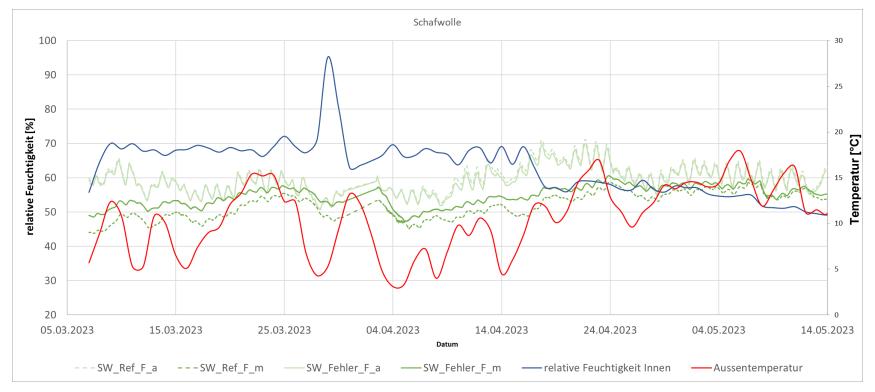
- Überdruckversuche (10 Pa / 40 Pa)
- mit und ohne Löcher ("Fehler")
 - Löcher mit 1 cm Durchmesser

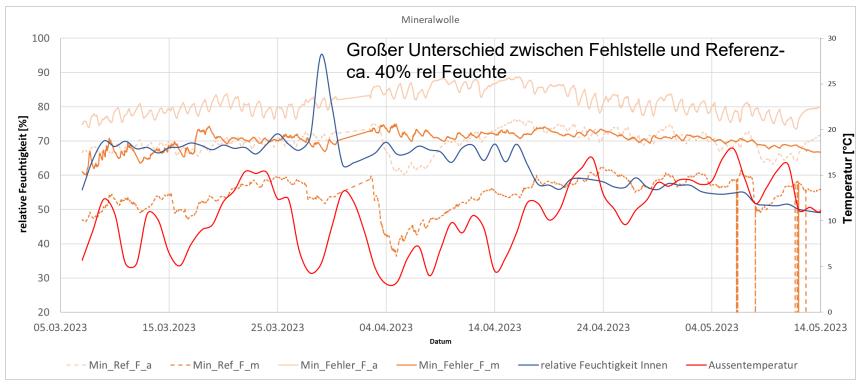

Installation



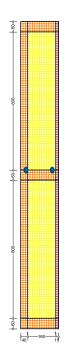
Erste Heizperiode gemessen und ausgewertet

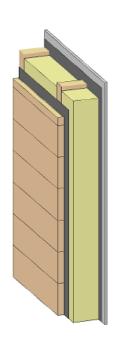
keine signifikanten Unterschiede zwischen Referenz- und Fehlermodul. Weiter ohne Schafwolle in der Installations-Ebene

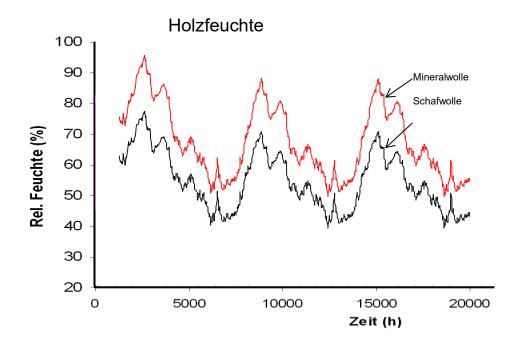



TUWIEN

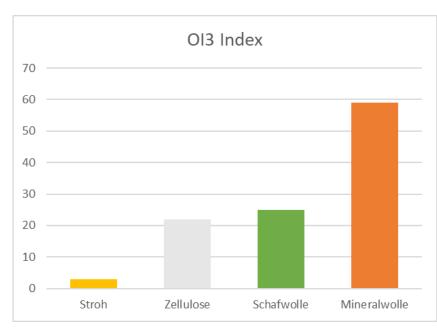
SCHAFWOLLE






MINERALWOLLE

Holzfeuchte Vergleich

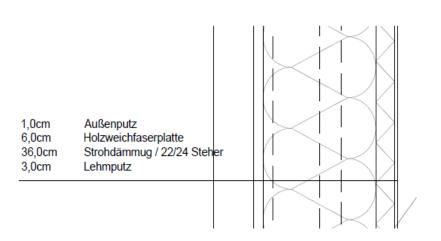


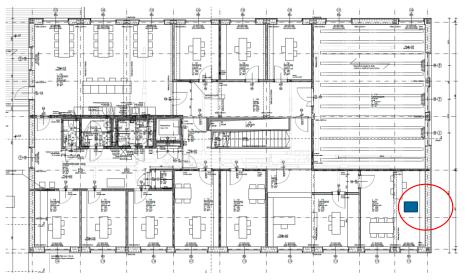
TU

Fazit Stresstest

- Fehlertoleranz ist bei ökologischen
 Dämmstoffen höher als bei Mineralwolle in Kombination mit Holz (diffusionsoffen)
- Deutlicher Einfluss von Fehlstellen bei Mineralwolle und Stroh
- Schafwolle und Zellulose am "fehlertolerantesten"
- ABER: Stroh übertrifft andere Dämmstoffe hinsichtlich Ökologie

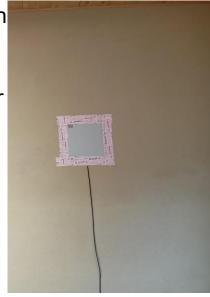
Monitoring an bestehenden Gebäuden- Haus des Lernens


- Außenwand
 - Wärmeleitfähigkeit Stroh
 - U-Wert und Wärmestrom
- begrüntes Dach
 - Feuchtigkeit

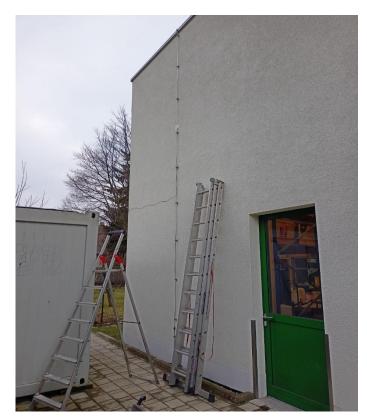


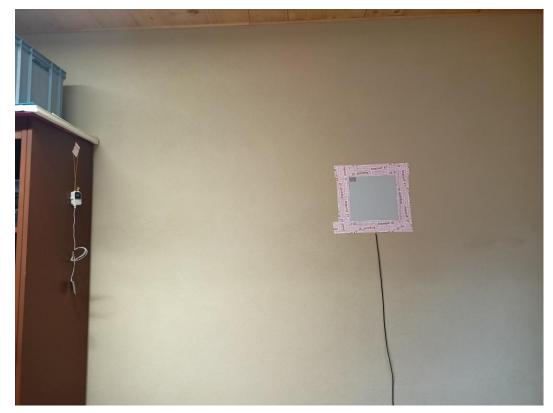
https://www.gesa-noe.at/ueber-gesa/haus-des-lernens/

 Messstelle: 1.OG an einer nordseitigen Wand in einem Seminarraum



Messtechnik Dämmeigenschaften




- Nadelsondenmessun g (ca. 2 Monate)
- Direkte Messung der Wärmeleitfähigkeit innerhalb der Dämmung

- Dauerhafte Wärmestrommessung (Winterperiode)
- Messung des
 Wärmestroms
 des gesamten
 Wandaufbaus,
 danach
 Berechnung des
 U-Werts

Messtechnik Dämmeigenschaften

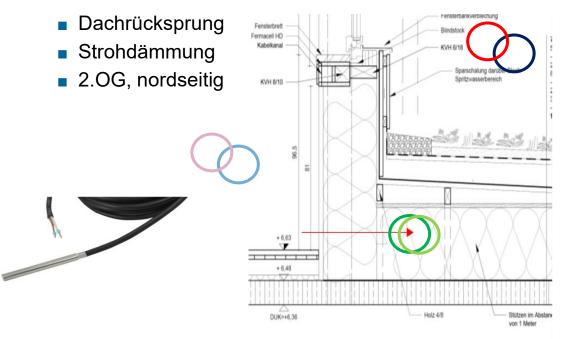
Wärmeleitfähigkeit λ – Baustrohballen [W/mK]

baubook 0,051

U-Wert [W/mK]	
gemessen mit Wärmestrommessfolie (TU Wien)	0,125
berechnet mit Wärmeleitfähigkeit von Nadelsonde	0,120

Aussenwand Stroh-Holz-Lehm

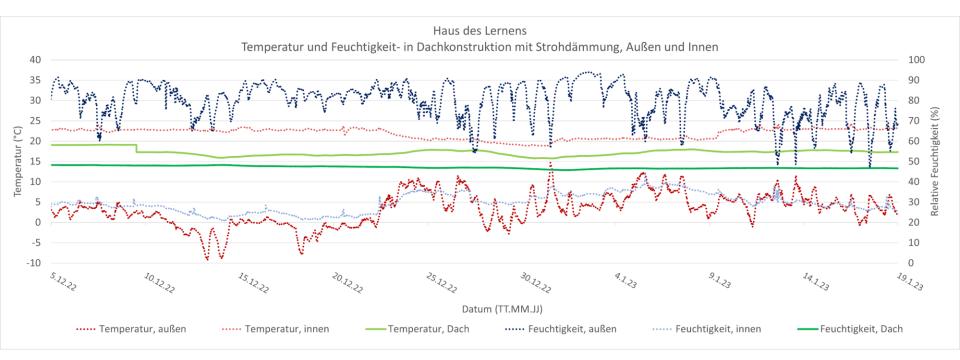
A-I, Gesamt


	d [m]	λ [W/mK]	R [m2K/W]
Silikatputz (ohne Kunstharzzusatz) armiert	0,0100	0,800	0,013
Synthesa Capatect MF-Fassadendämmplatte	0,0600	0,036	1,667
Strohdämmung Holz (Fichte, Kiefer, Tanne)	0,1800 0,1800	0,045 0,130	8,000 1,385
Strohdämmung Synthesa Capatect MF-Fassadendämmplatte	0,1800 0,1800	0,045 0,036	8,000 5,000
Lehmputz	0,0300	0,810	0,037
Wärmeübergangswiderstände			0,000
RTo=9,606 m2K/W; RTu=9,127 m2K/W;	0,4600	RT =	9,366

Neubau

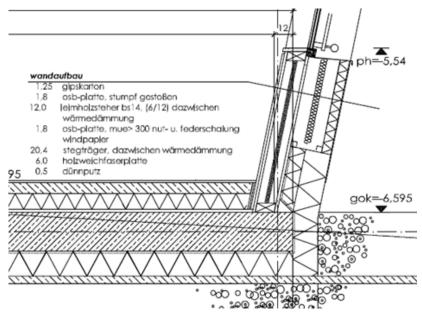
Stroh hat die Wärmeleitfähigkeit It. Baubook (nicht It. Energieausweis) – Nordseite, inhomogenes Material (nur 1 Messstelle) - Demnach ist der U-Wert eine Spur schlechter als im Energieausweis – klare Werte für verschiedene Strohdämmungen notwendig

Begrüntes Dach: Feuchtigkeit



- Temperatur und Feuchtesensoren
 - Innen
 - Außen
 - In der Konstruktion

Temperatur und Feuchtigkeit- Winter


Begrüntes Dach ist voll funktionsfähig - keine erhöhte Feuchtigkeit

Monitoring an bestehenden Gebäuden- Zyklamengasse

- WDVS- Schafwolle und Holzfaserdämmplatten
- Wasserschaden

Wärmeleitfähigkeit - Schafwolle

Ort der Messung	Wärmeleitfähigkeit
Messungen vor Ort	
An der Stelle des Wasserschadens 1. Messung	0,046 W/mK
An der Stelle des Wasserschadens 2. Messung	0,044 W/mK
Unbeschädigte Schafwolle	0,045 W/mK
Messungen im Labor	
Schafwolle neben dem Wasserschaden-	0,040 W/mK
unbeschädigt, äußere Lage der Dämmwolle	
Schafwolle neben dem Wasserschaden-	0,042 W/mK
unbeschädigt, innere Lage	
Schafwollprobe bei Wasserschaden	0,043 W/mK

 Wärmeleitfähigkeit der Schafwolle hat sich durch den Wasserschaden nicht verändert

Schimmelmessung-Exsikkator

Dämmmaterialien

Hanf

Schafwolle- Wasserschaden

Schafwolle- unbeschädigt

Schafwolle- unbenutzt

Holzfaser

Jute

Stroh

Mineralwolle

1 Monat

Hanf

Schafwolle-Wasserschaden

Schafwolleunbeschädigt

Holzfaser

Jute

Stroh

Mineralwolle

Schafwolleunbenutzt

21

Projektergebnisse natuREbuilt

6 Monate

Schafwolle-Wasserschaden

Schafwolleunbeschädigt

Mineralwolle

Holzfaser

Schafwolleunbenutzt

8 Monate

Schafwolle-Wasserschaden

Schafwolleunbeschädigt

Mineralwolle

Holzfaser

Schafwolleunbenutzt

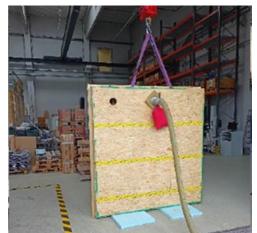
Fazit Schimmelmessung

- Jute beginnt am schnellsten/stärksten zu schimmeln (nach 1 Monat)
- Stroh und Hanf relativ ähnliches Verhalten (schimmeln nach 1 Monat)
- Unbehandelte Schafwolle weniger anfällig als benutzte (verschmutzte)Schafwolle, (schimmeln nach 6 Monaten)
- Neue Schafwolle, Holzfaser und Mineralwolle schimmeln auch nach 8 Monaten nicht

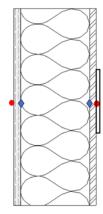
Gehäckseltes Stroh – Einblastechniken

Liegend, stehend, recycelt

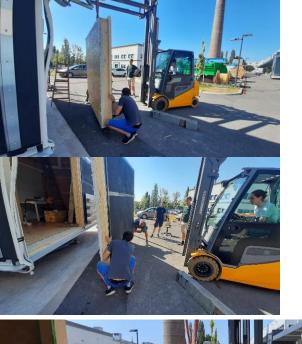
Wärmeleitfähigkeit über Wärmestrommessung


Aufbau:

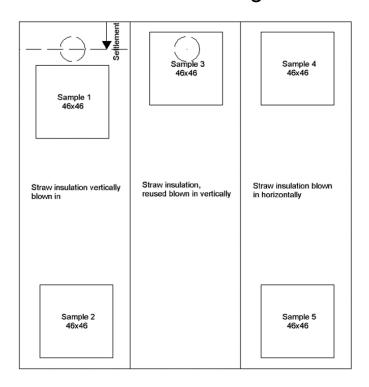
OSB 19mm

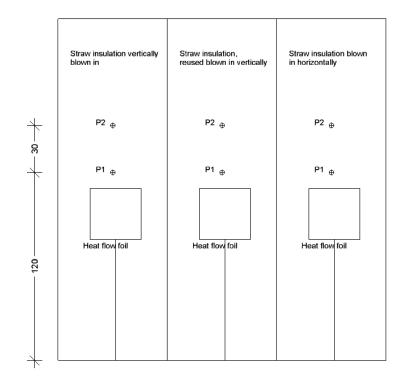

Einblasstroh 200mm

DHF 20mm

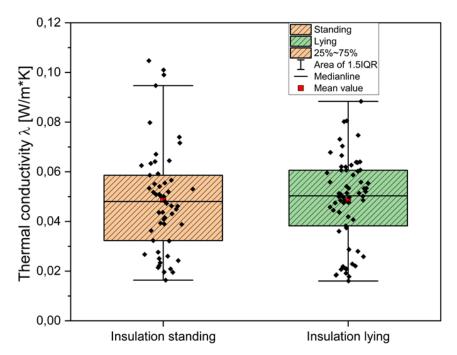


Unbehandeltes Stroh


Einbau DPM **bi.wbb**



Wärmeleitfähigkeit Einblasstroh

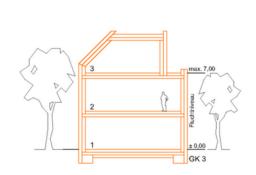

Nadelsondenmessungen und Laborversuche

Auswertungen- Wärmeleitfähigkeit

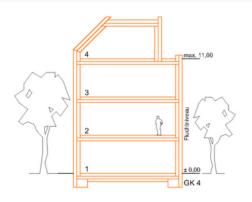
 Wärmeleitfähigkeit ist gleich: stehend, liegend oder wiederverwendete Strohhäckseldämmung

Wärmeleitfähigkeit λ [W/mK]

Unbehandeltes Stroh - Wärmestrommessung		
stehend	0,0488	
liegend	0,0484	
Unbehandeltes Stroh- Nadelsonde		
stehend	0,0447	
liegend	0,0463	
reused	0,0471	
Unbehandeltes Stroh- Laborversuche		
stehend	0,0513	
liegend	0,0461	
reused	0,0409	
Stroh mit Flammschutzmittel- Wärmestrommessung		
Stehend	0,0429	


Fazit Einblasstroh

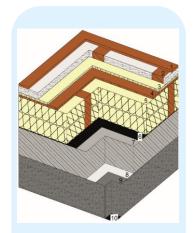
- Wärmeleitfähigkeit ist gleich, egal ob stehend, liegend oder wiederverwendete Strohhäckseldämmung eingeblasen wird
- keine Schimmelgefahr auch bei Stroh mit Flammschutzmittel


Entwicklung ökologischer Konstruktionen

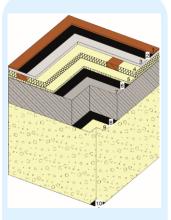
- Anforderungen:
 - mindestens 3Geschoße
 - hygrothermisch sicher, fehlertolerant
 - U-Wert < 0.15 (Passivhaus)
 - Brandschutz: REI60, REI90
 - Schallschutz analysiert

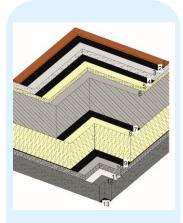
Gebäudeklasse 3 (GK3)

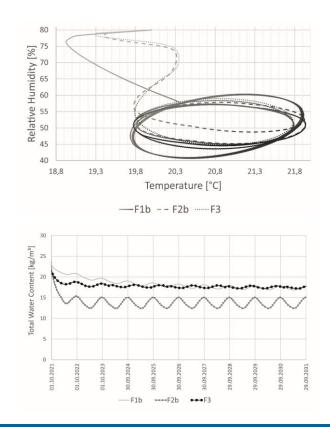
It. OIB: Gebäude mit nicht mehr als drei oberirdischen Geschossen und mit einem Fluchtniveau von nicht mehr als 7.0 m.



Gebäudeklasse 4 (GK4)

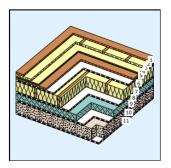

It. OIB: Gebäude mit nicht mehr als vier oberirdischen Geschossen und mit einem Fluchtniveau von nicht mehr als 11.0 m.


WUFI-Simulationen

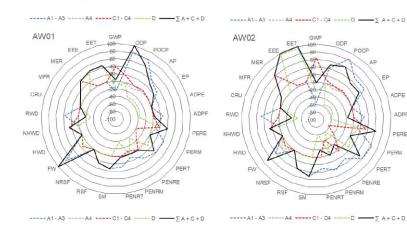

F1b
Fußbodenaufbau
mit innenliegender
Dämmung und
Streifenfundament

F2b
Fußbodenaufbau
mit außenliegender
Dämmung und
Plattenfundament

F3
Konventioneller
Fußbodenaufbau
mit XPS und
Plattenfundament



Ökologische Bewertung


- Methoden: CO2, OI3, LCA
- Datenbanken: baubook, EPD-Bau, ökobaudat

FB-STRFU-DO-EB: Fußboden, oberseitig gedämmt (30358)

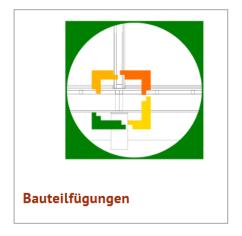
5.4.1 Außenwände

ADPF

PENRE: 1.112 MJ/m2 PENRM: 280 MJ/m² PERT: 928 MJ/m² PERE: 117 MJ/m² PERM: 812 MJ/m² GWP-total: 18,3 kg CO2 equ./m2 GWP-fossil: 95,8 kg CO2 equ./m2 GWP-biogenic: -77,4 kg CO2 equ./m2 AP: 0,359 kg SO₂ equ./m² EP: 0,165 kg PO₄3-/m² POCP: 0,0688 kg C₂H₄/m² ODP: 7,39-10-6 kg CFC-11/m2

PENRT: 1.391 MJ/m²

natuREbuilt Planungstool


- 20 Baustoffe
- 36 Aufbauten
- 44 Bauteilfügungen

natuREbuilt-Kriterien:

- REgional
- REsilient
- REgenerativ
- REssourcenschonend
- REalisierbar mehrgeschoßig

Baustoffe Baustoffe

Glasschaumschotter

Glasschaumschotter besteht überwiegend aus Recyclingglas. Das Altglas wird gemahlen und mit Zuschlagstoffen gemischt. Bei ca. 900°C entsteht Schaumglas, ...

Hanf

Hanf (Cannabis sativa) ist eine ca. 1.5 bis 2.5 m hohe Pflanze mit fingerförmigen Blättern und hellgrauen Früchten. ...

Holzweichfaser - lose (eingeblasen)

Es wird Restholz, meist aus nachhaltiger Forstwirtschaft aus Sägewerken, zu Hackschnitzeln verarbeitet oder ...

Schafwolle

Schafwolldämmstoffe werden aus der Wolle von Schafen hergestellt. Sie eignen sich aufgrund ihrer Länge, Faserfestigkeit, Feinheit und ...

Stroh (eingeblasen)

Weizenstroh als Nebenprodukt der Getreideproduktion wächst jährlich in enormen Mengen nach und wird nur zu einem geringen Teil aktiv genutzt

Strohballen, Baustrohballen

Weizenstroh als Nebenprodukt der Getreideproduktion wächst jährlich in enormen Mengen nach und ...

Zellulose, **Finblaszellulose**

Zellulosedämmstoff zum Finblasen besteht aus elastischen Zellulosefasern. die aus reinem Tageszeitungspapier hergestellt und ...

Bauschnittholz

Durch Sägen parallel zur Stammachse von Rundoder Rohholz entsteht Schnittholz

Brettschichtholz

Brettschichtholz (BSH, umgangssprachlich auch Leimholz oder Leimbinder) besteht aus mindestens 3 verleimten Brettlagen, ...

Brettsperrholz

Brettsperrholz (BSP, CLT, Cross Laminated Timber) ist ein Überbegriff für Massiyholztafeln, die aus kreuzweise verleimten Brettlagen ...

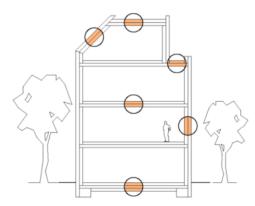
Holzwerkstoffe

Der Begriff Holzwerkstoffe ist nicht exakt definiert. Es handelt sich um einen Sammelbegriff für Produkte. ...

Kalk

Baukalk ist ein Sammelbegriff für alle im Bauwesen verwendeten Kalke. Weitere Hauptanwendungsgebiete für Kalk sind die Eisen- und Stahlindustrie. ...

Kies

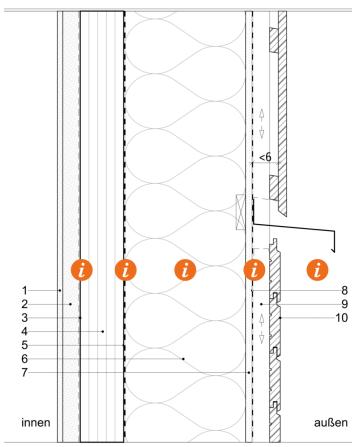

Kies ist eine Korngrößenbezeichnung eines Gesteins Im Bauwesen wird der runde Kies vom scharfkantigen Schotter unterschieden....

Lehmputz

Lehm ist kein genormter oder homogener Baustoff. Frist ein Gemisch aus Ton. Schluff und Sand, welches zusätzlich größere Gesteinspartikel und ...

Konstruktionen

wähle einen Bauteil


AW - Außenwand

FD - Flachdach

FB - <u>Fußboden</u>

GD - Geschossdecke

SD - Steildach

Schichtaufbau

1 Lehmdünnputz 0,50 cm

2 Faserlehmputz 4,00 cm

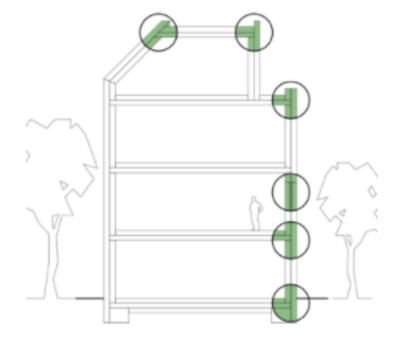
3 Putzträgerstruktur 0,01 cm

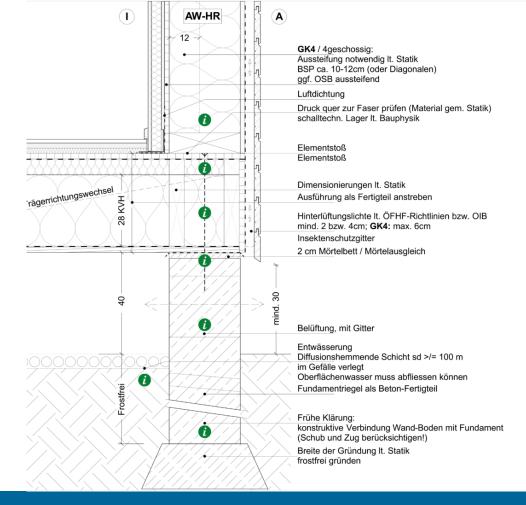
4 Brettsperrholz It. Statik 10,00 cm

5 luftdichte Folie 0,01 cm

6 ökol. Einblasdämmung (Stroh, Hanf, Zellulose,...) zw. Konstruktionsvollholz (6/28; é =max. 62,5; bzw. lt. Statik) 28,00 cm

7 Gipsfaserplatte 1,50 cm


8 winddichte Folie 0,06 cm


9 Hinterlüftung 4,00 cm

10 Massivholzschalung 1,90 cm

Gesamt: 49,98 cm

Anschlüsse + Details

Projektergebnisse natuREbuilt <u>www.naturebuilt.at/planungstool</u> 36

Ökologische Dämmstoffe wie Stroh, Zellulose und Schafwolle zeigen eine hohe Fehlertoleranz und können auch bel Schaden funktional blelben

Monitoring an realen Gebäuden bestätigt die Praxistaugiichkeit – Wärme- und Feuchteeigenschaften sind stabil

Schimmelversuche belegen Unterschiede zwischen Materiaiien: unbehandelte Naturfasern können empfindlich sein, jedoch lassen sich durch geeignete Materialwahi Risiken minimeren

Einblastechniken mit Stroh sind zuverlässig und ermoglichen ressourcenschonende Wiederverwendung

Mit den entwickelten Konstruktionen und dem Planungstool stehen praxistaugiiche, nachhaitige Lösungen fur mehrgeschossigen ökologischen Hochbau berett